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Abstract

In the realm of embedded many-core architectures, computer vision applications are a major motivator. A harmony between
computation and communication is vital for such systems to reach their full potential, however many computer vision techniques provide
a highly data dependent actions that make the work harder. The developer needs access to tools for rapid and accurate application-level
performance analysis in order to optimize application performance. Here, we go through the steps required to migrate and fine-tune a
face recognition program for the STHORM many-core accelerator by way of the STHORM OpenCL software development kit. We
isolate the key bottlenecks and separate the effects of the application, the openly programming paradigm, and the STHORM Openly
software development kit (SDK). Finally, we demonstrate how these problems might be fixed in the near future to provide programmers
even more leeway to enhance the efficiency of their applications.

1 Introduction

For a long time now, breakthroughs in device technology, computer design, and programming language
compilers have allowed us to meet the performance goals outlined by Moore's Law [11]. Architects have met
the proverbial "power wall" [2] in their pursuit of increasing the performance of single-core processors.
Profiting In order to maintain linear scaling of performance within a given power budget, the industry is moving
away from ever-increasing transistor counts and toward more energy-efficient multi- and many-core
architectures. ITRS forecasts a near-term rise in core count for multiprocessor systems of 1.4 xs per year [6], a
trend that is also seen on embedded processors for battery-powered mobile devices, where low power
consumption is essential.

New hardware is sometimes inspired by specific use cases; for example, computer vision applications have been
cited as a driver for embedded many-core architectures [17]. Many-core architectures may take use of the
inherent parallelism of embedded vision algorithms, which otherwise would need an enormous amount of
processing power, to achieve excellent performance. To maximize CPU use, it's important to strike a good
equilibrium between data transfer and processing time [4]. Even highly compute-bound algorithms may become
memory-bound on many-core architectures due to the increased memory bandwidth required as the number of
cores grows. The processing of video streams in real-time is a resource-intensive operation, and embedded
vision algorithms are no exception. Load balancing is an additional difficulty in obtaining high parallel
efficiency. On many-core machines, the performance of certain computer vision applications might suffer
because of their extreme

Reliance on data. The author of [15] analyzes the efficacy of a facial expression. Detecting software for a
GPGPU system developed in openly. He demonstrates how data-dependent behaviour affects parallel
performance on the GPU and how certain categorization processes perform better when run on the host CPU.
However, branch divergence penalties are incurred by data-dependent algorithms when executed on GPUs since
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their computing units are SIMD (single instruction, multiple data). In order to better handle data-dependent
algorithms[10], many-core designs like Karla’s Multi-Purpose Processor Array[5] and STMicroelectronics’s
STHORM]J12] are made up of clusters of MIMD (multiple instruction, multiple data) processors.

2 STHORM

STMicroelectronics' STHORM [12] many-core processor is designed for compute-intensive embedded
applications. It was developed by STMicroelectronics and the French Atomic and Alternative Energy
Commission (CEA) and was given the name Platform2012 [3]. Function both alone and as an accelerator in
conjunction with a host CPU.

Architecture

STHORM's scalable architecture consists of processing element (PE) clusters that may be adjusted from 1 to 4
in size, with each cluster able to house up to 16 PEs. High-level block schematic of the STHORM architecture is
shown in Figure 1. Connected by a network-on-a-chip (No), the clusters boast dynamically integrated
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Figure 1: STHORM Architecture Block Diagram

Capacity for per-cluster frequency and voltage scaling (DFVS). The cluster uses dual-issue STxP70 processors,
which are RISC processors with a 32-bit in-order data path and a floating point unit. One more STxP70 core is
used exclusively as a dedicated controller for a group of things. Each cluster's internals include 256KB of shared
memory, which may be accessed by any of the cluster's processors. The memory has been divided into 32 banks
with address interleaving to lessen the likelihood of collisions. Concurrent single-cycle memory access is
provided via the logarithmic interconnects mesh-of-trees (Moot) [14] architecture. When two or more
processors attempt to read from the same bank at the same time, a conflict occurs and only one request is
processed every cycle. Although processors wait in a blocking state until their request is fulfilled, a round-robin
approach guarantees everyone gets a fair shot at the scarce resources.

Openly Programming Model

Openly 1.1[7] is one of the three parallel programming frameworks that STHORM supports at varying
abstraction levels [13]. Although it was created for use with GP-GPUs in a heterogeneous setting, it is now also
widely used to program embedded multi- and many-core computers. In addition. The idea behind it is that a host
processor does the actual work of the program while a many-core compute device handles the heavy lifting of
the calculation kernels. Multiple compute units, each with many processing components, make up the computer
itself. The burden of the kernel is broken up into smaller chunks called "work-groups," each of which consists of
many individual tasks. The OpenCL runtime organizes the tasks to be performed by the compute units and their
individual processors. Barriers, locks, and atomic operations are just some of the synchronization techniques at
your disposal. There are four possible locations for data storage: public, internal, local, and private. Global data
buffers are allocated in the L3 host memory by the STHORM Openly runtime, whereas constant data are stored
in the L2 memory. L1, the cluster's shared memory, is where data is stored that is only accessible by a select
few. In order to move information across these buffers, the Openly API recommends using asynchronous work-
group copy methods, which initiate a DMA transfer for the full work-group. In STHORM's openly
implementation, the idea of a work-item copy is introduced, in which separate tasks initiate DMA transfers on
their own.

3 Face Detection Performances

Page | 2


http://www.jbstonline.com/

ISSN:0976-0172
Mr. Merugu Anand Kumar etal, JBio sci Tech, Vol 10(3),2022, 01-05
Journal of Bioscience And Technology

www.jbstonline.com

Optimization

From a sequential face detection application, we construct a parallel implementation in this case study. The
STHORM architecture is then optimized for the application via experimentation.

Application Description

The study's foundational sequential face identification technique is based on the work of Viola and Jones [16],
which employs a detector made up of a classifier cascade of Hear-like features that was trained using
Gadabouts. The accuracy of the classifier is checked often using scanning scale insensitivity is achieved by
applying the window approach on a pyramidal picture. The detector constructs an integral picture at each tier of
the image pyramid to speed up the calculation of features. Classifier cascades are structured as a hierarchy of
steps. At each tier, we calculate a response based on a set of characteristics and check it against lower and
higher boundaries. Detection is continued and the window is accepted if the stage answer is within tolerances;
otherwise, it is terminated. An acceptable window and a positive detection result are supplied if and only if all
classifier cascade steps are successful. Detections in close proximity to one another are combined into a single
detection and given a score depending on the number of original detections that were combined. The detections
with the lowest scores are thrown out in the final filtering phase.

Methodology

The speedup of a parallel application is known to be constrained by the execution time of its sequential portion
[1] according to Amdahl's law. In order to reduce the overall execution duration of the program, we plan to
parallelize the most time-consuming parts of it. To begin, we profile the reference sequential program using a
STxP70 cycle-approximate simulator and then sort the functions by their total execution time to determine
which ones take the most time. Our first set of parallelization candidates are the highest-rated functions.

Clear inputs and outputs are defined for these functions when they are refectories into openly kernels. The next
step is to optimize the load distribution by sizing the parallel task such that computation and communication are
overlapping. Important choices for parallel implementation include: < the parallel granularity, for example,
image frame, line, window, or pixel; * the workload distribution strategy, for example, static or dynamic
workload distribution; * the working data placement, for example, globally, locally, privately, etc.; * the data
transfer strategy, for example, individualistic or collaborative.

Hotspot Analysis

By using a cycle-approximate STxP70v4 simulator, we have analyzed the reference sequential implementation
of the face recognition application to locate the bottlenecks. Here, we refer to a QVGA picture with 24 faces as
the test image, which will serve as the basis for our study. Results from the test image profiling are shown in
Table 1, organized by algorithmic step and rated according to their total execution times. The classifier cascade,
integral picture creation, and the scalar were shown to be the three primary bottlenecks. These three steps
account for almost majority of the runtime; hence they were chosen to be parallelized. As an example, Table 1
displays the profiling statistics for our sequential face identification program using the worst-case picture (with
24 faces) from our testing database. We acquire these outcomes using a cycle-accurate STxP70v4 emulator in a
dual-issue arrangement with a clock frequency of 500 MHz

Application Plse Cycles Timoh[ms)d Y of Total
Detection Cascade | 61870820 |  1238|  568%
Integral Image 1078 M3 M0%

Scaler U] w3 By
Other 60T | 104] 480
Tia S| 27| 10y

Performance Measurements

The worst-case QVGA picture (24 faces) in our testing database is shown in Table 2 along with the measured
kernel times for both the group and individual efforts. The prototype board's findings are contrasted with those
obtained from the simulator. Effectiveness is reflected in the length of time it takes to process the kernel. Time
spent in runtime includes asynchronous data transfer time, as well as time spent waiting for events and on
barriers, and time spent in kernel prolong and epilogue accounts for overheads in launching and terminating
kernels. These findings demonstrate that synchronization hurdles, which account for around a third of total
kernel time, have a detrimental effect on the collaborative version. In particular, the lower synchronization
overhead afforded by the individualistic variant improves performance on both the simulator and the board. The
findings of the simulator indicate that the kernels prolong and epilogue is the primary causes of inefficiency.
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The simulator tests show that the collaborative method requires less time for the kernel to process data (6.9 ms)
(7.8 ms). The prototype findings, however, reveal an inversion: although the individualistic technique has a
lower processing time (44.9 ms), the collaborative approach has a greater one (12.4 ms). Waiting for events
accounts for less than one percent of simulator time but as much as half of kernel time on the prototype board.
This means that despite the fact that the STHORM simulator used is cycle-approximate, a significant
discrepancy exists between the simulator's output and that of the prototype board.

Table 2: Execution time for the face detection application on STHORM simulator and prototype, for 4 clusters
of 16 processing elements at 500 MHz % are relative to the total time.

Sitmlator Prototype

Data Transfer Strategy | Collaborative | Individualistic | Collaborative | Individualistic
Kernel Processing Time| 69ms 205%| 78ms 347%| 49ms 26.3%\124ms 1307
Kernel Prolog & Epilog |13.6 ms 42.2% | 141 ms GM% f9ms BO%|324ms 36.1%
Time Spent in Runtime | 117 ms 36.3%| 0.7ms  20%| 80ms 45,60 48 ms 50.0%
Asynchronous Copies | 03 s 00%] 03ms L% 00ms 0.0%) 16ms  18%
Waiting for Events Hns L% 03ms  L2%) 302ms 1770432 ms 48.2%
Weiting on Barriers 111 ms 3% 0 ms  0.5%| 83ms 283%| 00ms  0.0%
Total Time in Kernel 392 ms 100.0% 2.7 ms J00.0% 1709 ms 100.0% 30.7 ms 100.0%
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4. Detailed Analysis

According to Table 2, the simulator's kernel prolongs and epilogue account for the majority of the overall
runtime. For example, in Figure 2, we can see that the kernel prolong and epilogue are executed throughout the
collaborative approach's execution. Takes into account not only the time required to start and stop kernels, but
also any downtime the cluster may experience between work-group executions. These often result from the
interaction with the host processor or from an imbalance in the workload between different task groups as a
result of data-dependent behaviour.

We see longer kernel processing times on the prototype board compared to the simulator. The kernel processing
time is what really matters, and the STHORM simulator doesn't do a good job of modelling memory access
timings, which are included in the kernel processing time (save for DMA transfers). Memory inconsistencies are
not simulated in the simulator. This, in addition to the prototype board's increased latency and lower bandwidth
to the global memory, results in a significant discrepancy between the two. In addition, because the critical path
processors will take longer to reach the barriers due to the higher processing time, more time will be spent
waiting on the barriers. This is because synchronization barriers need all processors to reach the barrier call
before proceeding. The biggest discrepancy between the simulator and the actual product is the amount of time
spent waiting for events. The runtime will return an event handle once you initiate a DMA transfer using a non-
blocking asynchronous copy. It's hardly the only task processors can handle. Asynchronously, and then wait for
the transfer to finish using a wait call on the event handle. Thus, the elapsed time between events in our studies
is equivalent to the elapsed time between non-blocking DMA transfers. Due to the large discrepancy, it may be
concluded that the simulator does not faithfully replicate the DMA transfer times seen in the prototype.
Unfortunately, the STHORM SDK does not include any adjustable options to address this issue. For this reason,
the presented data does not allow for an exact estimation of the total time wasted as a result of load imbalance.
However, as shown in Figure 2, a significant portion of the kernel prolong and epilogue is related to inter-work-
group imbalance, and the amount of time lost due to inter- and intra-work-group load imbalance could amount
to as much as 70% of the total kernel time for the collaborative approach on the simulator.
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Piece of a trace for the face detection collaborative technique on STHORM (Figure 2). Displays the kernel
execution traces of many picture pyramid iterations for a single image frame. Maximizing Efficiency in an
Application From left to right: Schwambach, Cleyet-Merle, Issard, and Mancini A large degree of inter-work-
group imbalance persists, despite the fact that intra-work-group imbalance is almost eliminated using the
individualistic strategy. The collaborative technique is less efficient because of the greater memory conflict
penalties and lower load balancing it introduces, but the individualistic approach on the board still produces
superior performance despite the longer delays in data transfers.

5. Conclusion

Current architectures are being pushed to their limits by the rising popularity of computer vision applications.
However, vision algorithms frequently have very variable data-dependent execution durations, which make it
difficult to parallelize them. Unequal distribution of effort. The latter is a major cause of system inefficiency and
has a detrimental effect on parallel efficiency. It is up to the programmer to do some juggling in order to
restructure the algorithm and reduce the imbalance, since current data-parallel programming models such as
Openly are unable to effectively schedule work to fill-in the gaps caused by this imbalance. In order to better
allocate tasks on the fly, a more dynamic programming paradigm is required. Finding the right equilibrium
between processing and communication is crucial for getting the most out of a parallel platform. Internal
memory conflicts, external communication latencies and throughputs, and interactions with the host processor
are not modelled adequately by the current generation of STHORM many-core simulation tools. It is
consequently impossible to utilize the simulators for performance estimate or adjustment at the application level.
Because of the greater setup work and the limits of the prototype itself, exploring the design space is constrained
when only physical prototypes are available. In addition, a completely functional prototype is frequently not
available until after crucial architectural choices have been made throughout the design process of a new
embedded system. Therefore, it is crucial to have simulation platforms that can offer accurate timing data for the
host, accelerator, and memory subsystems in order to conduct accurate performance evaluation and optimization
of the application at an early stage in the development cycle.
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